Compare commits

...

5 Commits

Author SHA1 Message Date
f56e524d05 feat: pbr try 2025-10-08 19:13:05 +02:00
b989d74fca feat: render sphere 2025-10-08 18:36:55 +02:00
42d5def07e feat: light rendering 2025-10-08 18:36:46 +02:00
fefe273fce feat: sphere asset 2025-10-08 18:36:38 +02:00
99f5cd3715 feat: entt library 2025-10-08 18:17:47 +02:00
20 changed files with 2827 additions and 202 deletions

View File

@ -58,6 +58,9 @@
"typeinfo": "cpp", "typeinfo": "cpp",
"variant": "cpp", "variant": "cpp",
"codecvt": "cpp", "codecvt": "cpp",
"typeindex": "cpp" "typeindex": "cpp",
"ranges": "cpp",
"list": "cpp",
"unordered_set": "cpp"
} }
} }

View File

@ -16,6 +16,13 @@ if (UNIX)
) )
FetchContent_MakeAvailable(glm) FetchContent_MakeAvailable(glm)
FetchContent_Declare(
EnTT
GIT_REPOSITORY https://github.com/skypjack/entt.git
GIT_TAG d4014c74dc3793aba95ae354d6e23a026c2796db
)
FetchContent_MakeAvailable(EnTT)
find_package(SDL3 REQUIRED CONFIG REQUIRED COMPONENTS SDL3-shared) find_package(SDL3 REQUIRED CONFIG REQUIRED COMPONENTS SDL3-shared)
find_package(OpenGL REQUIRED) find_package(OpenGL REQUIRED)
find_package(GLEW REQUIRED) find_package(GLEW REQUIRED)
@ -58,6 +65,7 @@ target_link_libraries(CodingGame PRIVATE
OpenGL::GL OpenGL::GL
GLEW::GLEW GLEW::GLEW
glm::glm glm::glm
EnTT::EnTT
) )
# ---------- Visibility (helps optimizer & smaller binaries on Release) ---------- # ---------- Visibility (helps optimizer & smaller binaries on Release) ----------

12
assets/sphere.mtl Normal file
View File

@ -0,0 +1,12 @@
# Blender 4.3.2 MTL File: 'None'
# www.blender.org
newmtl Material.001
Ns 250.000000
Ka 1.000000 1.000000 1.000000
Kd 0.799999 0.715049 0.364110
Ks 0.500000 0.500000 0.500000
Ke 0.000000 0.000000 0.000000
Ni 1.500000
d 1.000000
illum 2

2537
assets/sphere.obj Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,6 @@
#ifndef COMPONENTS_PLAYER_H_
#define COMPONENTS_PLAYER_H_
struct camera {};
#endif // COMPONENTS_PLAYER_H_

View File

@ -0,0 +1,6 @@
#ifndef COMPONENTS_LIGHT_H_
#define COMPONENTS_LIGHT_H_
struct light {};
#endif // COMPONENTS_LIGHT_H_

11
include/components/mesh.h Normal file
View File

@ -0,0 +1,11 @@
#ifndef COMPONENTS_MESH_H_
#define COMPONENTS_MESH_H_
#include <memory>
#include "renderer/wavefront.h"
struct mesh {
std::unique_ptr<Object> object;
};
#endif // COMPONENTS_MESH_H_

View File

@ -0,0 +1,12 @@
#ifndef COMPONENTS_TRANSFORM_H_
#define COMPONENTS_TRANSFORM_H_
#include <glm/glm.hpp>
struct transform {
glm::vec3 position;
glm::vec3 rotation;
glm::vec3 scale;
};
#endif // COMPONENTS_TRANSFORM_H_

View File

@ -1,14 +0,0 @@
#ifndef ECS_ENTITY_CAMERA_H_
#define ECS_ENTITY_CAMERA_H
#include "ecs/entity.h"
namespace ecs {
class Camera : Entity {
public:
Camera() = default;
~Camera() = default;
};
}
#endif // ECS_ENTITY_CAMERA_H_

View File

@ -1,9 +0,0 @@
#ifndef ECS_COMPONENT_H_
#define ECS_COMPONENT_H_
namespace ecs {
class Component {
};
}
#endif // ECS_COMPONENT_H_

View File

@ -1,16 +0,0 @@
#ifndef ECS_COMP_MESH_H_
#define ECS_COMP_MESH_H_
#include "renderer/wavefront.h"
#include "ecs/component.h"
namespace ecs {
class Mesh : Component {
public:
Object* object;
Mesh(Object* model) : object(model) {}
};
}
#endif // ECS_COMP_MESH_H_

View File

@ -1,18 +0,0 @@
#ifndef ECS_COMP_TRANSFORM_H_
#define ECS_COMP_TRANSFORM_H_
#include <glm/glm.hpp>
#include "ecs/component.h"
namespace ecs {
class Transform : Component {
public:
Transform() = default;
public:
glm::vec3 pos;
glm::vec3 rot;
glm::vec3 scale;
};
}
#endif // ECS_COMP_TRANSFORM_H_

View File

@ -1,18 +0,0 @@
#ifndef ECS_ENTITY_H_
#define ECS_ENTITY_H_
#include "ecs/components/transform.h"
#include "ecs/components/mesh.h"
namespace ecs {
class Entity {
public:
Transform transform;
Mesh mesh;
Entity(Mesh m) : mesh(m) {}
~Entity() = default;
};
}
#endif // ECS_ENTITY_H_

View File

@ -2,16 +2,16 @@
#define RENDERER_H_ #define RENDERER_H_
#include <glm/glm.hpp> #include <glm/glm.hpp>
#include <entt/entity/registry.hpp>
#include "renderer/shader.h" #include "renderer/shader.h"
#include "ecs/entity.h"
// TODO: make static or singleton // TODO: make static or singleton
class Renderer { class Renderer {
public: public:
Renderer(ecs::Entity& light, ecs::Entity& camera); Renderer();
void RenderLight(); void Render(entt::registry& registry);
void RenderEntity(const ecs::Entity& entity);
void OnWindowResized(int w, int h); void OnWindowResized(int w, int h);
private: private:
@ -20,9 +20,6 @@ private:
glm::mat4 m_model; glm::mat4 m_model;
glm::mat4 m_proj; glm::mat4 m_proj;
glm::mat4 m_view; glm::mat4 m_view;
ecs::Entity& m_light;
ecs::Entity& m_camera;
}; };
#endif // RENDERER_H_ #endif // RENDERER_H_

View File

@ -35,6 +35,7 @@ private:
void CreateNewMesh(const std::string& materialName); void CreateNewMesh(const std::string& materialName);
public: public:
void Render(Shader& shader); void Render(Shader& shader);
[[nodiscard]] inline const std::string Name() const { return m_name; }
private: private:
std::string m_name; std::string m_name;
std::vector<glm::vec3> m_vertices; std::vector<glm::vec3> m_vertices;

View File

@ -16,26 +16,31 @@
#include "renderer/wavefront.h" #include "renderer/wavefront.h"
#include "renderer/engine.h" #include "renderer/engine.h"
#include "renderer/renderer.h" #include "renderer/renderer.h"
#include "ecs/entity.h"
#include "IO/file_manager.h" #include "IO/file_manager.h"
#include "components/transform.h"
#include "components/light.h"
#include "components/camera.h"
#include "components/mesh.h"
class Game : public IApplication { class Game : public IApplication {
public: public:
Game() Game() {
: m_light(ecs::Entity(ecs::Mesh(Object::LoadFile("./assets/cube.obj")))), Object* lightObj = Object::LoadFile("./assets/sphere.obj");
m_camera(ecs::Entity(ecs::Mesh(nullptr))), const auto lightEntity = m_registry.create();
m_target(ecs::Entity(ecs::Mesh(Object::LoadFile("./assets/monkey.obj")))), m_registry.emplace<transform>(lightEntity, glm::vec3(-5.f, 5.f, 5.f), glm::vec3(0.f));
m_renderer(m_light, m_camera) { m_registry.emplace<light>(lightEntity);
// Object* lightObj = Object::LoadFile("./assets/cube.obj"); m_registry.emplace<mesh>(lightEntity, std::unique_ptr<Object>(lightObj));
// ecs::Mesh lightMesh = ecs::Mesh(lightObj);
// m_light = ecs::Entity(lightMesh);
m_light.transform.pos = glm::vec3(-5.f, 5.f, 5.f);
// Object* cameraObj = nullptr; const auto cameraEntity = m_registry.create();
// ecs::Mesh cameraMesh = ecs::Mesh(cameraObj); m_registry.emplace<transform>(cameraEntity, glm::vec3(0.f, 0.f, 2.f));
// m_camera = ecs::Entity(cameraMesh); m_registry.emplace<camera>(cameraEntity, glm::vec3(0.f, 0.f, 2.f));
m_camera.transform.pos = glm::vec3(0.f, 0.f, 2.f);
Object* targetObj = Object::LoadFile("./assets/monkey.obj");
const auto targetEntity = m_registry.create();
m_registry.emplace<transform>(targetEntity, glm::vec3(0.f));
m_registry.emplace<mesh>(targetEntity, std::unique_ptr<Object>(targetObj));
} }
~Game() override {} ~Game() override {}
@ -100,8 +105,11 @@ public:
if (state[SDL_SCANCODE_SPACE]) velocity.y += 1.f; if (state[SDL_SCANCODE_SPACE]) velocity.y += 1.f;
if (state[SDL_SCANCODE_LSHIFT]) velocity.y -= 1.f; if (state[SDL_SCANCODE_LSHIFT]) velocity.y -= 1.f;
m_camera.transform.pos += velocity * deltaTime * 2.5f; // speed is e.g. 2.5f auto view = m_registry.view<camera, transform>();
m_camera.transform.rot = cameraViewDirection; for (auto [cam, camTransform] : view.each()) {
camTransform.position += velocity * deltaTime * 2.5f; // speed is e.g. 2.5f
camTransform.rotation = cameraViewDirection;
}
// update rotation // update rotation
if (!m_paused) { if (!m_paused) {
@ -111,12 +119,17 @@ public:
} }
} }
m_target.transform.rot.y = m_angle; auto rotateEntts = m_registry.view<transform, const mesh>();
for (auto [entity, transform, mesh] : rotateEntts.each()) {
// auto targetTransform = rotateEntts.get<transform>(entity);
if (!m_registry.all_of<light>(entity)) {
transform.rotation.y = m_angle;
}
}
} }
void OnRender() override { void OnRender() override {
m_renderer.RenderLight(); m_renderer.Render(m_registry);
m_renderer.RenderEntity(m_target);
m_frameCount++; m_frameCount++;
m_currentTicks = SDL_GetTicks(); m_currentTicks = SDL_GetTicks();
@ -131,9 +144,7 @@ public:
} }
private: private:
Renderer m_renderer; Renderer m_renderer;
ecs::Entity m_target; entt::registry m_registry;
ecs::Entity m_light;
ecs::Entity m_camera;
float m_angle; float m_angle;
Uint64 m_lastTicks; Uint64 m_lastTicks;

View File

@ -7,8 +7,12 @@
#include "window/window.h" #include "window/window.h"
#include "IO/file_manager.h" #include "IO/file_manager.h"
Renderer::Renderer(ecs::Entity& light, ecs::Entity& camera) #include "components/transform.h"
: m_light(light), m_camera(camera) #include "components/camera.h"
#include "components/light.h"
#include "components/mesh.h"
Renderer::Renderer()
{ {
m_proj = glm::perspective( m_proj = glm::perspective(
static_cast<float>(M_PI_2), static_cast<float>(M_PI_2),
@ -19,12 +23,14 @@ Renderer::Renderer(ecs::Entity& light, ecs::Entity& camera)
m_shader.init( m_shader.init(
FileManager::read("./src/shaders/simple.vs"), FileManager::read("./src/shaders/simple.vs"),
FileManager::read("./src/shaders/simple.fs") FileManager::read("./src/shaders/pbr.fs")
); );
m_model = glm::mat4(1.f); m_model = glm::mat4(1.f);
m_shader.use(); m_shader.use();
m_shader.setMat4("u_projection", m_proj);
} }
void Renderer::OnWindowResized(int w, int h) { void Renderer::OnWindowResized(int w, int h) {
@ -34,53 +40,55 @@ void Renderer::OnWindowResized(int w, int h) {
0.01f, 0.01f,
100.0f 100.0f
); );
m_shader.setMat4("u_projection", m_proj);
} }
void Renderer::RenderLight() { void Renderer::Render(entt::registry& registry) {
auto view = registry.view<transform, mesh>();
auto cam = registry.view<transform, camera>().back();
auto camTransform = registry.get<transform>(cam);
auto lightEntt = registry.view<transform, light>().back();
auto lightTransform = registry.get<transform>(lightEntt);
m_view = glm::lookAt( m_view = glm::lookAt(
m_camera.transform.pos, camTransform.position,
m_camera.transform.pos + m_camera.transform.rot, camTransform.position + camTransform.rotation,
glm::vec3(0.f, 1.f, 0.f) glm::vec3(0.f, 1.f, 0.f)
); );
m_shader.setMat4("u_view", m_view); m_shader.setMat4("u_view", m_view);
m_shader.setMat4("u_projection", m_proj);
m_shader.setVec3("lightColor", glm::vec3(1.0f, 1.0f, 1.0f)); m_shader.setVec3("lightColor", glm::vec3(1.0f, 1.0f, 1.0f));
m_shader.setVec3("lightPos", m_light.transform.pos); m_shader.setVec3("lightPos", lightTransform.position);
m_shader.setVec3("viewPos", m_camera.transform.pos); m_shader.setVec3("viewPos", camTransform.position);
m_model = glm::mat4(1.f); // std::cout << "cam pos: " << "vec(" << camTransform.position.x << ", " << camTransform.position.y << ", " << camTransform.position.z << ")" << std::endl;
m_model = glm::translate(m_model, m_light.transform.pos); // std::cout << "cam rot: " << "vec(" << camTransform.rotation.x << ", " << camTransform.rotation.y << ", " << camTransform.rotation.z << ")" << std::endl;
m_shader.setMat4("u_model", m_model); // std::cout << "light pos: " << "vec(" << lightTransform.position.x << ", " << lightTransform.position.y << ", " << lightTransform.position.z << ")" << std::endl;
// std::cout << "light rot: " << "vec(" << lightTransform.rotation.x << ", " << lightTransform.rotation.y << ", " << lightTransform.rotation.z << ")" << std::endl;
m_light.mesh.object->Render(m_shader); for (auto [entity, transf, mesh] : view.each()) {
} if (mesh.object == nullptr) {
std::cerr << "WARN: Entity doesn't have a mesh to render" << std::endl;
return;
}
void Renderer::RenderEntity(const ecs::Entity& entity) { m_shader.setBool("isLight", registry.all_of<light>(entity));
if (entity.mesh.object == nullptr) {
std::cerr << "WARN: Entity doesn't have a mesh to render" << std::endl; m_model = glm::mat4(1.0f);
return;
// Apply translation
m_model = glm::translate(m_model, transf.position);
// Apply rotations (order matters!)
m_model = glm::rotate(m_model, transf.rotation.x, glm::vec3(1, 0, 0)); // pitch
m_model = glm::rotate(m_model, transf.rotation.y, glm::vec3(0, 1, 0)); // yaw
m_model = glm::rotate(m_model, transf.rotation.z, glm::vec3(0, 0, 1)); // roll
m_shader.setMat4("u_model", m_model);
mesh.object->Render(m_shader);
} }
m_view = glm::lookAt(
m_camera.transform.pos,
m_camera.transform.pos + m_camera.transform.rot,
glm::vec3(0.f, 1.f, 0.f)
);
m_model = glm::mat4(1.0f);
// Apply translation
m_model = glm::translate(m_model, entity.transform.pos);
// Apply rotations (order matters!)
m_model = glm::rotate(m_model, entity.transform.rot.x, glm::vec3(1, 0, 0)); // pitch
m_model = glm::rotate(m_model, entity.transform.rot.y, glm::vec3(0, 1, 0)); // yaw
m_model = glm::rotate(m_model, entity.transform.rot.z, glm::vec3(0, 0, 1)); // roll
m_shader.setMat4("u_model", m_model);
entity.mesh.object->Render(m_shader);
} }

View File

@ -393,29 +393,97 @@ Object* Object::LoadFile(const std::string& filename) {
} }
// void Object::Render(Shader& shader)
// {
// for (auto &mesh : m_meshes) {
// auto material = GetMaterial(mesh.materialName);
// shader.setFloat("ambientStrength", 0.2f);
// shader.setFloat("shininess", material->GetSpecularWeight());
// shader.setFloat("opacity", material->GetOpacity());
// shader.setBool("useSpecular", material->GetIllumination() >= 2);
// shader.setFloat("specularStrength", 1.0f);
// shader.setVec3("ambientColor", material->GetAmbientColor());
// shader.setVec3("diffuseColor", material->GetDiffuseColor());
// shader.setVec3("specularColor", material->GetSpecularColor());
// if (material->HasDiffuseTexture()) {
// shader.setBool("useTexture", true);
// glActiveTexture(GL_TEXTURE0);
// glBindTexture(GL_TEXTURE_2D, material->GetDiffuseTexture()->GetID());
// shader.setInt("diffuseTex", 0);
// } else {
// shader.setBool("useTexture", false);
// }
// mesh.Render();
// }
// }
void Object::Render(Shader& shader) void Object::Render(Shader& shader)
{ {
for (auto &mesh : m_meshes) { for (auto &mesh : m_meshes)
{
auto material = GetMaterial(mesh.materialName); auto material = GetMaterial(mesh.materialName);
shader.setFloat("ambientStrength", 0.2f);
shader.setFloat("shininess", material->GetSpecularWeight());
shader.setFloat("opacity", material->GetOpacity());
shader.setBool("useSpecular", material->GetIllumination() >= 2);
shader.setFloat("specularStrength", 1.0f);
shader.setVec3("ambientColor", material->GetAmbientColor());
shader.setVec3("diffuseColor", material->GetDiffuseColor());
shader.setVec3("specularColor", material->GetSpecularColor());
// --- Basic material properties ---
shader.setFloat("opacity", material->GetOpacity());
// Albedo (base color)
shader.setVec3("albedo", material->GetDiffuseColor());
// Metallic and roughness (defaults)
shader.setFloat("metallic", 0.8f);
shader.setFloat("roughness", 0.5f);
shader.setFloat("ao", 1.0f); // default ambient occlusion if none
// --- Optional textures ---
int texUnit = 0;
// Albedo texture
if (material->HasDiffuseTexture()) { if (material->HasDiffuseTexture()) {
shader.setBool("useTexture", true); shader.setBool("useAlbedoMap", true);
glActiveTexture(GL_TEXTURE0); glActiveTexture(GL_TEXTURE0 + texUnit);
glBindTexture(GL_TEXTURE_2D, material->GetDiffuseTexture()->GetID()); glBindTexture(GL_TEXTURE_2D, material->GetDiffuseTexture()->GetID());
shader.setInt("diffuseTex", 0); shader.setInt("albedoTex", texUnit++);
} else { } else {
shader.setBool("useTexture", false); shader.setBool("useAlbedoMap", false);
} }
// Metallic texture
// if (material->HasMetallicTexture()) {
if (false) {
shader.setBool("useMetallicMap", true);
glActiveTexture(GL_TEXTURE0 + texUnit);
// glBindTexture(GL_TEXTURE_2D, material->GetMetallicTexture()->GetID());
shader.setInt("metallicTex", texUnit++);
} else {
shader.setBool("useMetallicMap", false);
}
// Roughness texture
// if (material->HasRoughnessTexture()) {
if (false) {
shader.setBool("useRoughnessMap", true);
glActiveTexture(GL_TEXTURE0 + texUnit);
// glBindTexture(GL_TEXTURE_2D, material->GetRoughnessTexture()->GetID());
shader.setInt("roughnessTex", texUnit++);
} else {
shader.setBool("useRoughnessMap", false);
}
// AO texture
// if (material->HasAoTexture()) {
if (false) {
shader.setBool("useAoMap", true);
glActiveTexture(GL_TEXTURE0 + texUnit);
// glBindTexture(GL_TEXTURE_2D, material->GetAoTexture()->GetID());
shader.setInt("aoTex", texUnit++);
} else {
shader.setBool("useAoMap", false);
}
// --- Render mesh ---
mesh.Render(); mesh.Render();
} }
} }

View File

@ -1,37 +1,42 @@
#version 410 core #version 410 core
// Output color
out vec4 FragColor; out vec4 FragColor;
in vec3 vertexPos; in vec3 vertexPos;
in vec3 vertexNormal; in vec3 vertexNormal;
in vec2 TexCoords; in vec2 TexCoords;
// Lighting inputs
uniform vec3 lightPos; uniform vec3 lightPos;
uniform vec3 viewPos; uniform vec3 viewPos;
// From Object Renderer // Material parameters
uniform vec3 ambientColor; uniform vec3 albedo; // Base color (replaces diffuseColor)
uniform vec3 diffuseColor; uniform float metallic; // 0 = dielectric, 1 = metal
uniform vec3 specularColor; // used as F0 (base reflectance) uniform float roughness; // 0 = smooth mirror, 1 = rough
uniform float ao; // Ambient occlusion
uniform float ambientStrength; // Textures
uniform float specularStrength; uniform sampler2D albedoTex;
uniform float shininess; // mapped to roughness uniform sampler2D metallicTex;
uniform bool useSpecular; uniform sampler2D roughnessTex;
uniform sampler2D aoTex;
uniform bool useAlbedoMap;
uniform bool useMetallicMap;
uniform bool useRoughnessMap;
uniform bool useAoMap;
uniform float opacity; uniform float opacity;
uniform sampler2D diffuseTex; // Used for emissive light sources
uniform bool useTexture; uniform bool isLight;
#define PI 3.14159265359
#define LIGHT_COLOR vec3(1.0, 1.0, 1.0) #define LIGHT_COLOR vec3(1.0, 1.0, 1.0)
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
// Helper functions for Cook-Torrance BRDF // Helper functions
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
// Normal Distribution Function (GGX/Trowbridge-Reitz)
float DistributionGGX(vec3 N, vec3 H, float roughness) float DistributionGGX(vec3 N, vec3 H, float roughness)
{ {
float a = roughness * roughness; float a = roughness * roughness;
@ -41,16 +46,15 @@ float DistributionGGX(vec3 N, vec3 H, float roughness)
float num = a2; float num = a2;
float denom = (NdotH2 * (a2 - 1.0) + 1.0); float denom = (NdotH2 * (a2 - 1.0) + 1.0);
denom = 3.14159265 * denom * denom; denom = PI * denom * denom;
return num / denom; return num / denom;
} }
// Geometry function (Schlick-GGX)
float GeometrySchlickGGX(float NdotV, float roughness) float GeometrySchlickGGX(float NdotV, float roughness)
{ {
float r = (roughness + 1.0); float r = (roughness + 1.0);
float k = (r * r) / 8.0; // remapped for direct lighting float k = (r * r) / 8.0;
float num = NdotV; float num = NdotV;
float denom = NdotV * (1.0 - k) + k; float denom = NdotV * (1.0 - k) + k;
@ -58,69 +62,77 @@ float GeometrySchlickGGX(float NdotV, float roughness)
return num / denom; return num / denom;
} }
// Smith's geometry function
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{ {
float NdotV = max(dot(N, V), 0.0); float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0); float NdotL = max(dot(N, L), 0.0);
float ggx1 = GeometrySchlickGGX(NdotV, roughness); float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx2 = GeometrySchlickGGX(NdotL, roughness); float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2; return ggx1 * ggx2;
} }
// Fresnel term (Schlick's approximation) vec3 fresnelSchlick(float cosTheta, vec3 F0)
vec3 FresnelSchlick(float cosTheta, vec3 F0)
{ {
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0); return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
} }
// ----------------------------------------------------------------------------
// Main
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
void main() void main()
{ {
if (isLight) {
vec3 emissive = LIGHT_COLOR * 10.0; // bright light source
FragColor = vec4(emissive, 1.0);
return;
}
// Inputs
vec3 N = normalize(vertexNormal); vec3 N = normalize(vertexNormal);
vec3 V = normalize(viewPos - vertexPos); vec3 V = normalize(viewPos - vertexPos);
vec3 L = normalize(lightPos - vertexPos); vec3 L = normalize(lightPos - vertexPos);
vec3 H = normalize(V + L); vec3 H = normalize(V + L);
// Texture or uniform color // Base color (albedo)
vec3 albedo = (useTexture) vec3 baseColor = useAlbedoMap ? texture(albedoTex, TexCoords).rgb : albedo;
? texture(diffuseTex, TexCoords).rgb
: diffuseColor;
// Map shininess to roughness (inverse relationship) float metal = useMetallicMap ? texture(metallicTex, TexCoords).r : metallic;
float roughness = clamp(1.0 - (shininess / 256.0), 0.05, 1.0); float rough = useRoughnessMap ? texture(roughnessTex, TexCoords).r : roughness;
float aoValue = useAoMap ? texture(aoTex, TexCoords).r : ao;
// Base reflectivity (F0) // Reflectance at normal incidence (F0)
vec3 F0 = mix(vec3(0.04), specularColor, specularStrength); vec3 F0 = vec3(0.04); // typical dielectric reflectance
F0 = mix(F0, baseColor, metal); // metals use albedo as F0
// Cook-Torrance BRDF // Cook-Torrance BRDF
float NDF = DistributionGGX(N, H, roughness); float NDF = DistributionGGX(N, H, rough);
float G = GeometrySmith(N, V, L, roughness); float G = GeometrySmith(N, V, L, rough);
vec3 F = FresnelSchlick(max(dot(H, V), 0.0), F0); vec3 F = fresnelSchlick(max(dot(H, V), 0.0), F0);
vec3 numerator = NDF * G * F; vec3 numerator = NDF * G * F;
float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.001; float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.001;
vec3 specular = numerator / denominator; vec3 specular = numerator / denominator;
// Energy conservation // kS is specular reflection, kD is diffuse reflection (energy conservation)
vec3 kS = F; vec3 kS = F;
vec3 kD = vec3(1.0) - kS; vec3 kD = vec3(1.0) - kS;
kD *= (useSpecular ? 1.0 : 1.0); // keep diffuse always unless specular is off kD *= 1.0 - metal;
float NdotL = max(dot(N, L), 0.0); float NdotL = max(dot(N, L), 0.0);
vec3 diffuse = kD * albedo / 3.14159265; vec3 radiance = LIGHT_COLOR; // single light source color/intensity
vec3 radiance = LIGHT_COLOR;
vec3 Lo = (diffuse + specular) * radiance * NdotL; vec3 Lo = (kD * baseColor / PI + specular) * radiance * NdotL;
// Ambient (simple, not IBL) // Ambient (IBL approximation using ao)
vec3 ambient = ambientStrength * ambientColor * albedo; vec3 ambient = vec3(0.03) * baseColor * aoValue;
vec3 result = ambient + Lo; vec3 color = ambient + Lo;
// Gamma correction // HDR tonemapping and gamma correction
result = pow(result, vec3(1.0/2.2)); color = color / (color + vec3(1.0));
color = pow(color, vec3(1.0 / 2.2));
FragColor = vec4(result, opacity); FragColor = vec4(color, opacity);
} }

View File

@ -27,6 +27,8 @@ uniform float opacity;
uniform sampler2D diffuseTex; uniform sampler2D diffuseTex;
uniform bool useTexture; uniform bool useTexture;
uniform bool isLight;
#define LIGHT_COLOR vec3(1.0, 1.0, 1.0) #define LIGHT_COLOR vec3(1.0, 1.0, 1.0)
void main() void main()
@ -57,5 +59,11 @@ void main()
vec3 result = (ambient + diffuse + specular) * texColor; vec3 result = (ambient + diffuse + specular) * texColor;
if (isLight) {
vec3 emissive = LIGHT_COLOR * 10.0; // big intensity
FragColor = vec4(emissive, 1.0);
return;
}
FragColor = vec4(result, opacity); FragColor = vec4(result, opacity);
} }