feat: engine as library

This commit is contained in:
2025-10-16 19:43:51 +02:00
parent 165073c36d
commit aa7aafe944
42 changed files with 160 additions and 147 deletions

View File

@ -0,0 +1,61 @@
#include "engine/renderer/debug.h"
#include <iostream>
void MessageCallback(GLenum source,
GLenum type,
GLuint id,
GLenum severity,
GLsizei length,
const GLchar* message,
const void* userParam)
{
if(id == 131169 || id == 131185 || id == 131218 || id == 131204) return;
std::cout << "---------------" << std::endl;
std::cout << "Debug message (" << id << "): " << message << std::endl;
switch (source)
{
case GL_DEBUG_SOURCE_API: std::cout << "Source: API"; break;
case GL_DEBUG_SOURCE_WINDOW_SYSTEM: std::cout << "Source: Window System"; break;
case GL_DEBUG_SOURCE_SHADER_COMPILER: std::cout << "Source: Shader Compiler"; break;
case GL_DEBUG_SOURCE_THIRD_PARTY: std::cout << "Source: Third Party"; break;
case GL_DEBUG_SOURCE_APPLICATION: std::cout << "Source: Application"; break;
case GL_DEBUG_SOURCE_OTHER: std::cout << "Source: Other"; break;
} std::cout << std::endl;
switch (type)
{
case GL_DEBUG_TYPE_ERROR: std::cout << "Type: Error"; break;
case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR: std::cout << "Type: Deprecated Behaviour"; break;
case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR: std::cout << "Type: Undefined Behaviour"; break;
case GL_DEBUG_TYPE_PORTABILITY: std::cout << "Type: Portability"; break;
case GL_DEBUG_TYPE_PERFORMANCE: std::cout << "Type: Performance"; break;
case GL_DEBUG_TYPE_MARKER: std::cout << "Type: Marker"; break;
case GL_DEBUG_TYPE_PUSH_GROUP: std::cout << "Type: Push Group"; break;
case GL_DEBUG_TYPE_POP_GROUP: std::cout << "Type: Pop Group"; break;
case GL_DEBUG_TYPE_OTHER: std::cout << "Type: Other"; break;
} std::cout << std::endl;
switch (severity)
{
case GL_DEBUG_SEVERITY_HIGH: std::cout << "Severity: high"; break;
case GL_DEBUG_SEVERITY_MEDIUM: std::cout << "Severity: medium"; break;
case GL_DEBUG_SEVERITY_LOW: std::cout << "Severity: low"; break;
case GL_DEBUG_SEVERITY_NOTIFICATION: std::cout << "Severity: notification"; break;
} std::cout << std::endl;
std::cout << std::endl;
return;
(void) source;
(void) id;
(void) length;
(void) userParam;
std::cerr << "GL CALLBACK: " << (type == GL_DEBUG_TYPE_ERROR ? "** GL ERROR **" : "")
<< " type = 0x" << type
<< ", severity = 0x" << severity
<< ", message = " << message << std::endl;
// std::cerr << "GL CALLBACK: %s type = 0x%x, severity = 0x%x, message = %s\n",
// (type == GL_DEBUG_TYPE_ERROR ? "** GL ERROR **" : ""),
// type, severity, message);
}

View File

@ -0,0 +1,42 @@
#include <memory>
#include "engine/renderer/engine.h"
#include "engine/window/event.h"
#include "engine/renderer/wavefront.h"
std::unique_ptr<IApplication> Engine::s_app = nullptr;
std::shared_ptr<Window> Engine::s_window = nullptr;
bool Engine::s_running = false;
void Engine::Run(std::unique_ptr<IApplication> app) {
s_app = std::move(app);
s_window = Window::GetInstance();
s_running = true;
s_app->OnInit();
s_window->Subscribe<WindowCloseRequested>([](const WindowCloseRequested& e) {
Engine::s_running = false;
});
s_window->Subscribe<WindowResized>([](const WindowResized& e) {
Engine::s_app->OnWindowResized(e);
});
while (s_running) {
s_window->ProcessEvents();
s_app->OnUpdate();
s_app->OnRender();
s_window->SwapBuffers();
}
s_app->OnShutdown();
s_window->Destroy();
s_app.reset();
}

View File

@ -0,0 +1,60 @@
#include <cstddef>
#include "engine/renderer/mesh.h"
Mesh::Mesh() {
m_vao = 0;
m_vbo = 0;
m_ebo = 0;
glGenVertexArrays(1, &m_vao);
glGenBuffers(1, &m_vbo);
glGenBuffers(1, &m_ebo);
glBindVertexArray(m_vao);
// VBO (vertex buffer)
glBindBuffer(GL_ARRAY_BUFFER, m_vbo);
glBufferData(GL_ARRAY_BUFFER, 0, nullptr, GL_DYNAMIC_DRAW);
// EBO (index buffer)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_ebo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, 0, nullptr, GL_DYNAMIC_DRAW);
// attributes
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), reinterpret_cast<const void*>(offsetof(Vertex, m_position)));
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), reinterpret_cast<const void*>(offsetof(Vertex, m_normal)));
glEnableVertexAttribArray(1);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), reinterpret_cast<const void*>(offsetof(Vertex, m_texCoord)));
glEnableVertexAttribArray(2);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
}
void Mesh::Upload() const {
glBindVertexArray(m_vao);
glBindBuffer(GL_ARRAY_BUFFER, m_vbo);
glBufferData(GL_ARRAY_BUFFER, m_vertexBuffer.size() * sizeof(Vertex), m_vertexBuffer.data(), GL_DYNAMIC_DRAW);
// Upload indices
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_ebo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, m_indexBuffer.size() * sizeof(unsigned int), m_indexBuffer.data(), GL_DYNAMIC_DRAW);
glBindVertexArray(0);
}
void Mesh::Render(unsigned int count)
{
Bind();
if (count > 1) {
glDrawElementsInstanced(GL_TRIANGLES, static_cast<GLsizei>(m_indexBuffer.size()), GL_UNSIGNED_INT, 0, count);
} else {
glDrawElements(GL_TRIANGLES, static_cast<GLsizei>(m_indexBuffer.size()), GL_UNSIGNED_INT, 0);
}
Unbind();
}

View File

@ -0,0 +1,246 @@
#include <iostream>
#include <cassert>
#include <glm/glm.hpp>
#include <glm/ext/matrix_clip_space.hpp>
#ifdef WIN32
#include <corecrt_math_defines.h>
#endif
#include <glm/ext/matrix_transform.hpp>
#define GLM_ENABLE_EXPERIMENTAL
#include <glm/gtx/euler_angles.hpp>
#include "engine/renderer/renderer.h"
#include "engine/window/window.h"
#include "engine/IO/file_manager.h"
#include "engine/components/transform.h"
#include "engine/components/camera.h"
#include "engine/components/light.h"
#include "engine/components/mesh.h"
#include "engine/components/batch.h"
Renderer::Renderer(entt::registry& registry) : m_registry(registry)
{
m_proj = glm::perspective(
static_cast<float>(M_PI_2),
static_cast<float>(Window::GetWidth()) / static_cast<float>(Window::GetHeight()),
0.01f,
100.0f
);
m_shader.init(
FileManager::read("./src/shaders/main.vs"),
FileManager::read("./src/shaders/pbr.fs")
);
m_depthShader.init(
FileManager::read("./src/shaders/depth.vs"),
FileManager::read("./src/shaders/depth.fs")
);
m_model = glm::mat4(1.f);
m_shader.use();
m_shader.setMat4("u_projection", m_proj);
}
void Renderer::Init() {
// auto view = m_registry.view<batch, mesh>();
// for (auto [_, b, m] : m_registry.view<batch, mesh>().each()) {
// unsigned int items = 0;
// for (auto [entt, item] : m_registry.view<batch::item>().each()) {
// if (item.batchId == b.id()) ++items;
// }
// b.prepare()
// m.object->EnableBatch(b.m_instance_vbo);
// }
}
void Renderer::OnWindowResized(int w, int h) {
m_proj = glm::perspective(
static_cast<float>(M_PI_2),
static_cast<float>(w) / static_cast<float>(h),
0.01f,
100.0f
);
}
void Renderer::ApplyLights(Shader &shader) {
auto lights = m_registry.view<light>();
// TODO: Pass Lights Data to depth shader as well
shader.setInt("lightsCount", static_cast<int>(lights.size()));
size_t lightIndex = 0;
for (auto entity : lights) {
auto &l = m_registry.get<light>(entity);
auto &transf = m_registry.get<transform>(entity);
shader.setInt("lights[" + std::to_string(lightIndex) + "].type", static_cast<int>(l.type));
shader.setVec3("lights[" + std::to_string(lightIndex) + "].position", transf.position);
shader.setVec3("lights[" + std::to_string(lightIndex) + "].color", l.color);
shader.setFloat("lights[" + std::to_string(lightIndex) + "].intensity", l.intensity);
shader.setMat4("lights[" + std::to_string(lightIndex) + "].lightSpace", l.lightSpace);
shader.setInt("lights[" + std::to_string(lightIndex) + "].shadowMap", 10 + lightIndex);
glActiveTexture(GL_TEXTURE10 + lightIndex);
glBindTexture(GL_TEXTURE_2D, l.shadowMap);
++lightIndex;
}
}
void Renderer::UpdateView() {
auto cam = m_registry.view<transform, camera>().back();
auto camTransform = m_registry.get<transform>(cam);
m_view = glm::lookAt(
camTransform.position,
camTransform.position + camTransform.rotation,
glm::vec3(0.f, 1.f, 0.f)
);
m_shader.setMat4("u_view", m_view);
m_shader.setMat4("u_projection", m_proj);
m_shader.setVec3("viewPos", camTransform.position);
}
void Renderer::RenderScene(Shader &shader) {
std::unordered_map<unsigned int, std::vector<entt::entity>> batches;
for (auto [entt, item] : m_registry.view<batch::item>().each()) {
if (batches.find(item.batchId) == batches.end())
batches.insert(std::make_pair(item.batchId, std::vector<entt::entity>()));
batches[item.batchId].push_back(entt);
}
shader.setBool("u_isInstanced", true);
shader.setBool("isLight", false);
shader.setVec3("currentLightColor", glm::vec3(0.f));
for (auto [entt, b, m] : m_registry.view<batch, mesh>().each()) {
// check if have items for batch render
if (batches.find(b.id()) == batches.end()) continue;
auto &batchItems = batches[b.id()];
std::vector<glm::mat4> models;
models.reserve(batchItems.size());
for (auto item : batchItems) {
auto &t = m_registry.get<transform>(item);
glm::mat4 rotation = glm::yawPitchRoll(t.rotation.y, t.rotation.x, t.rotation.z);
auto itemModel = glm::translate(glm::mat4(1.f), t.position) * rotation;
models.push_back(itemModel);
}
auto prevInstanceVBO = b.m_instance_vbo;
b.prepare(models.data(), models.size());
if (prevInstanceVBO <= 0) {
std::cout << "[DEBUG] enabling batch"<<std::endl;
m.object->EnableBatch(b.m_instance_vbo);
}
m.object->Render(shader, batchItems.size());
}
shader.setBool("u_isInstanced", false);
for (auto [entity, transf, mesh] : m_registry.view<transform, mesh>(entt::exclude<batch, batch::item>).each()) {
if (mesh.object == nullptr) {
std::cerr << "WARN: Entity doesn't have a mesh to render" << std::endl;
return;
}
if (m_registry.all_of<light>(entity)) {
auto &l = m_registry.get<light>(entity);
shader.setBool("isLight", true);
shader.setVec3("currentLightColor", l.color);
} else {
shader.setBool("isLight", false);
shader.setVec3("currentLightColor", glm::vec3(0.f));
}
glm::mat4 rotation = glm::yawPitchRoll(transf.rotation.y, transf.rotation.x, transf.rotation.z);
m_model = glm::translate(glm::mat4(1.f), transf.position) * rotation;
shader.setMat4("u_model", m_model);
mesh.object->Render(shader, 1);
}
}
void Renderer::GenerateShadowMaps() {
const unsigned int SHADOW_WIDTH = 1024, SHADOW_HEIGHT = 1024;
m_depthShader.use();
auto lights = m_registry.view<light>();
for (auto [lEntt, l] : lights.each()) {
// TODO: support other light types when ready
if (l.type != light::LightType::DIRECTIONAL) return;
glGenFramebuffers(1, &l.fbo);
glGenTextures(1, &l.shadowMap);
glBindTexture(GL_TEXTURE_2D, l.shadowMap);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24,
SHADOW_WIDTH, SHADOW_HEIGHT, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
float borderColor[] = {1.0f, 1.0f, 1.0f, 1.0f};
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor);
glBindFramebuffer(GL_FRAMEBUFFER, l.fbo);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, l.shadowMap, 0);
glDrawBuffer(GL_NONE);
glReadBuffer(GL_NONE);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
}
}
void Renderer::Render() {
const unsigned int SHADOW_WIDTH = 1024, SHADOW_HEIGHT = 1024;
m_depthShader.use();
auto lights = m_registry.view<light, transform>();
for (auto [lEntt, l, t] : lights.each()) {
// TODO: support other light types when ready
if (l.type != light::LightType::DIRECTIONAL) return;
glClearColor(0x18/255.0f, 0x18/255.0f, 0x18/255.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
float near_plane = 0.1f, far_plane = 50.0f;
glm::vec3 target = glm::vec3(0.0f, 0.5f, 0.0f);
glm::mat4 lightView = glm::lookAt(t.position, target, glm::vec3(0.0f, 1.0f, 0.0f));
glm::mat4 lightProjection = glm::ortho(-6.0f, 6.0f, -6.0f, 6.0f, 1.0f, 20.0f);
glm::mat4 lightSpaceMatrix = lightProjection * lightView;
m_depthShader.setMat4("u_lightSpace", lightSpaceMatrix);
l.lightSpace = lightSpaceMatrix;
glCullFace(GL_FRONT);
glViewport(0, 0, SHADOW_WIDTH, SHADOW_HEIGHT);
glBindFramebuffer(GL_FRAMEBUFFER, l.fbo);
glClear(GL_DEPTH_BUFFER_BIT);
RenderScene(m_depthShader);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glCullFace(GL_BACK);
}
// actual rendering
glViewport(0, 0, Window::GetWidth(), Window::GetHeight());
glClearColor(0x18/255.0f, 0x18/255.0f, 0x18/255.0f, 1);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
m_shader.use();
ApplyLights(m_shader);
UpdateView();
RenderScene(m_shader);
}

View File

@ -0,0 +1,135 @@
#include <iostream>
#include <GL/glew.h>
#include "engine/renderer/shader.h"
Shader::Shader()
{
}
Shader::~Shader()
{
}
void Shader::init(const std::string &vertexCode, const std::string &fragmentCode)
{
m_vertexCode = vertexCode;
m_fragmentCode = fragmentCode;
compile();
link();
}
void Shader::use()
{
glUseProgram(m_id);
}
void Shader::setBool(const std::string &name, bool value) const
{
glUniform1i(glGetUniformLocation(m_id, name.c_str()), (int)value);
}
void Shader::setInt(const std::string &name, int value) const
{
glUniform1i(glGetUniformLocation(m_id, name.c_str()), value);
}
void Shader::setFloat(const std::string &name, float value) const
{
glUniform1f(glGetUniformLocation(m_id, name.c_str()), value);
}
void Shader::setVec2(const std::string &name, const glm::vec2 &value) const
{
glUniform2fv(glGetUniformLocation(m_id, name.c_str()), 1, &value[0]);
}
void Shader::setVec2(const std::string &name, float x, float y) const
{
glUniform2f(glGetUniformLocation(m_id, name.c_str()), x, y);
}
void Shader::setVec3(const std::string &name, const glm::vec3 &value) const
{
glUniform3fv(glGetUniformLocation(m_id, name.c_str()), 1, &value[0]);
}
void Shader::setVec3(const std::string &name, float x, float y, float z) const
{
glUniform3f(glGetUniformLocation(m_id, name.c_str()), x, y, z);
}
void Shader::setVec4(const std::string &name, const glm::vec4 &value) const
{
glUniform4fv(glGetUniformLocation(m_id, name.c_str()), 1, &value[0]);
}
void Shader::setVec4(const std::string &name, float x, float y, float z, float w) const
{
glUniform4f(glGetUniformLocation(m_id, name.c_str()), x, y, z, w);
}
void Shader::setMat2(const std::string &name, const glm::mat2 &mat) const
{
glUniformMatrix2fv(glGetUniformLocation(m_id, name.c_str()), 1, GL_FALSE, &mat[0][0]);
}
void Shader::setMat3(const std::string &name, const glm::mat3 &mat) const
{
glUniformMatrix3fv(glGetUniformLocation(m_id, name.c_str()), 1, GL_FALSE, &mat[0][0]);
}
void Shader::setMat4(const std::string &name, const glm::mat4 &mat) const
{
glUniformMatrix4fv(glGetUniformLocation(m_id, name.c_str()), 1, GL_FALSE, &mat[0][0]);
}
void Shader::compile()
{
const char *vsCode = m_vertexCode.c_str();
m_vertexId = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(m_vertexId, 1, &vsCode, NULL);
glCompileShader(m_vertexId);
checkCompileError(m_vertexId, "Vertex Shader");
const char *fsCode = m_fragmentCode.c_str();
m_fragmentId = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(m_fragmentId, 1, &fsCode, NULL);
glCompileShader(m_fragmentId);
checkCompileError(m_fragmentId, "Fragment Shader");
}
void Shader::link()
{
m_id = glCreateProgram();
glAttachShader(m_id, m_vertexId);
glAttachShader(m_id, m_fragmentId);
glLinkProgram(m_id);
checkLinkingError();
glDeleteShader(m_vertexId);
glDeleteShader(m_fragmentId);
}
void Shader::checkCompileError(unsigned int shader, const std::string type)
{
int success;
char infoLog[1024];
glGetShaderiv(shader, GL_COMPILE_STATUS, &success);
if (!success)
{
glGetShaderInfoLog(shader, 1024, NULL, infoLog);
std::cout << "Shader: Error compiling " << type << ":" << std::endl
<< infoLog
<< std::endl;
}
}
void Shader::checkLinkingError()
{
int success;
char infoLog[1024];
glGetProgramiv(m_id, GL_LINK_STATUS, &success);
if (!success)
{
glGetProgramInfoLog(m_id, 1024, NULL, infoLog);
std::cout << "Shader: Error linking shader program: " << std::endl
<< infoLog
<< std::endl;
}
}

View File

@ -0,0 +1,36 @@
#include <iostream>
#include <memory>
#include <GL/glew.h>
#include "engine/renderer/texture.h"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
std::unique_ptr<Texture> Texture::LoadFile(const std::string& filename) {
auto texture = std::make_unique<Texture>();
int w, h, c;
unsigned char *data = stbi_load(filename.c_str(), &w, &h, &c, 4);
if (!data) {
std::cerr << "ERROR: Failed to load texture under '" << filename << "'" << std::endl;
std::exit(1);
}
glGenTextures(1, &texture.get()->m_id);
glBindTexture(GL_TEXTURE_2D, texture.get()->m_id);
// TODO: configure properly
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
std::cout << "Loaded texture under '" << filename << "' with size of " << sizeof(data) << " bytes" << std::endl;
stbi_image_free(data);
return std::move(texture);
}

View File

@ -0,0 +1,509 @@
#include <iostream>
#include <fstream>
#include <cstring>
#include <memory>
#include <filesystem>
#include <GL/glew.h>
#include "engine/IO/parser.h"
#include "engine/renderer/mesh.h"
#include "engine/renderer/wavefront.h"
#define DEFAULT_MATERIAL_NAME "default"
// ObjElement toElement(const std::string &s) {
// if (s == "#") return ObjElement::OHASH;
// if (s == "mtllib") return ObjElement::MTLLIB;
// if (s == "usemtl") return ObjElement::USEMTL;
// if (s == "o") return ObjElement::O;
// if (s == "v") return ObjElement::V;
// if (s == "vn") return ObjElement::VN;
// if (s == "vt") return ObjElement::VT;
// if (s == "f") return ObjElement::F;
// return ObjElement::OUNKNOWN;
// }
inline ObjElement toElement(const char* s) {
switch (s[0]) {
case '#': return ObjElement::OHASH;
case 'm': if (strcmp(s, "mtllib") == 0) return ObjElement::MTLLIB; break;
case 'u': if (strcmp(s, "usemtl") == 0) return ObjElement::USEMTL; break;
case 'o': if (s[1] == '\0') return ObjElement::O; break;
case 'v':
if (s[1] == '\0') return ObjElement::V;
if (s[1] == 'n' && s[2] == '\0') return ObjElement::VN;
if (s[1] == 't' && s[2] == '\0') return ObjElement::VT;
break;
case 'f': if (s[1] == '\0') return ObjElement::F; break;
}
return ObjElement::OUNKNOWN;
}
// MtlElement toMtlElement(const std::string &s) {
// if (s == "#") return MtlElement::MHASH;
// if (s == "newmtl") return MtlElement::NEWMTL;
// if (s == "Ns") return MtlElement::NS;
// if (s == "Ka") return MtlElement::KA;
// if (s == "Ks") return MtlElement::KS;
// if (s == "Kd") return MtlElement::KD;
// if (s == "Ni") return MtlElement::NI;
// if (s == "d") return MtlElement::D;
// if (s == "illum") return MtlElement::ILLUM;
// if (s == "map_Kd") return MtlElement::MAP_KD;
// if (s == "map_Ka") return MtlElement::MAP_KA;
// // if (s == "map_Ke") return MtlElement::MAP_KE;
// return MtlElement::MUNKNOWN;
// }
inline MtlElement toMtlElement(const char* s) {
switch (s[0]) {
case '#': return MtlElement::MHASH;
case 'n':
if (strcmp(s, "newmtl") == 0) return MtlElement::NEWMTL;
break;
case 'N':
if (s[1] == 's' && s[2] == '\0') return MtlElement::NS;
if (s[1] == 'i' && s[2] == '\0') return MtlElement::NI;
break;
case 'K':
if (s[1] == 'a' && s[2] == '\0') return MtlElement::KA;
if (s[1] == 's' && s[2] == '\0') return MtlElement::KS;
if (s[1] == 'd' && s[2] == '\0') return MtlElement::KD;
break;
case 'd':
if (s[1] == '\0') return MtlElement::D;
break;
case 'i':
if (strcmp(s, "illum") == 0) return MtlElement::ILLUM;
break;
case 'm':
if (strcmp(s, "map_Kd") == 0) return MtlElement::MAP_KD;
if (strcmp(s, "map_Ka") == 0) return MtlElement::MAP_KA;
// if (strcmp(s, "map_Ke") == 0) return MtlElement::MAP_KE;
break;
}
return MtlElement::MUNKNOWN;
}
inline int Object::NormalizeIndex(int idx, int baseCount) {
// idx is the raw value returned by parser:
// 0 -> means "not present" or invalid in our convention
// >0 -> 1-based index -> convert to 0-based
// <0 -> negative index -> relative to baseCount: baseCount + idx
if (idx == 0) return -1; // absent / invalid
if (idx > 0) return idx - 1; // 1-based -> 0-based
return baseCount + idx; // negative -> count from end
}
Object::Object() {
m_vertices = std::vector<glm::vec3>();
m_normals = std::vector<glm::vec3>();
m_texCoords = std::vector<glm::vec2>();
}
void Object::LoadMaterials(const std::filesystem::path& filename) {
std::ifstream file(filename);
if (!file.is_open()) {
std::cerr << "Failed to open MTL file: " << filename << std::endl;
return;
}
std::string currentMaterialName;
std::shared_ptr<Material> currentMaterial;
char line[1024]; // buffer per line
while (file.getline(line, sizeof(line))) {
Parser p(line);
char* prefix = p.TakeWord();
if (!prefix) continue;
switch (toMtlElement(prefix)) {
case MtlElement::MHASH: // comment
continue;
case MtlElement::NEWMTL:
{
// If a material was being built, commit it first
if (currentMaterial) {
AddMaterial(currentMaterialName, std::move(currentMaterial));
currentMaterial = nullptr;
}
char* materialName = p.TakeWord();
if (materialName) {
currentMaterialName = materialName;
currentMaterial = std::make_shared<Material>();
}
break;
}
case MtlElement::NS: // specular weight
{
float weight = p.TakeFloat();
if (currentMaterial) currentMaterial->SetSpecularWeight(weight);
break;
}
case MtlElement::KA: // ambient color
{
float r = p.TakeFloat();
float g = p.TakeFloat();
float b = p.TakeFloat();
if (currentMaterial) currentMaterial->SetAmbientColor(glm::vec3(r, g, b));
break;
}
case MtlElement::KS: // specular color
{
float r = p.TakeFloat();
float g = p.TakeFloat();
float b = p.TakeFloat();
if (currentMaterial) currentMaterial->SetSpecularColor(glm::vec3(r, g, b));
break;
}
case MtlElement::KD: // diffuse color
{
float r = p.TakeFloat();
float g = p.TakeFloat();
float b = p.TakeFloat();
if (currentMaterial) currentMaterial->SetDiffuseColor(glm::vec3(r, g, b));
break;
}
case MtlElement::D: // opacity
{
float d = p.TakeFloat();
if (currentMaterial) currentMaterial->SetOpacity(d);
break;
}
case MtlElement::ILLUM: // illumination model
{
int illum = p.TakeInt();
if (currentMaterial) currentMaterial->SetIllumination(illum);
break;
}
case MtlElement::MAP_KD: // diffuse texture map
{
// take rest of line as texture path (can contain spaces)
char* texPath = p.TakeUntil('\0');
if (texPath && currentMaterial) {
// trim trailing spaces
size_t len = std::strlen(texPath);
while (len > 0 && (texPath[len - 1] == ' ' || texPath[len - 1] == '\t'))
texPath[--len] = '\0';
currentMaterial->SetDiffuseTexture(Texture::LoadFile(texPath));
}
break;
}
case MtlElement::MAP_KA: // ambient texture map
{
char* texPath = p.TakeUntil('\0');
if (texPath && currentMaterial) {
size_t len = std::strlen(texPath);
while (len > 0 && (texPath[len - 1] == ' ' || texPath[len - 1] == '\t'))
texPath[--len] = '\0';
// optional: handle ambient texture
// currentMaterial->SetAmbientTexture(Texture::LoadFile(texPath));
}
break;
}
default:
// ignore unknown tokens
break;
}
}
// Commit last material if pending
if (currentMaterial) {
AddMaterial(currentMaterialName, std::move(currentMaterial));
}
file.close();
}
void Object::AddMaterial(std::string name, std::shared_ptr<Material> material)
{
m_materials.insert(std::make_pair(std::move(name), std::move(material)));
}
std::shared_ptr<Material> Object::GetMaterial(std::string name)
{
auto material = m_materials.find(name);
if (material == m_materials.end()) return nullptr;
return material->second;
}
void Object::CreateNewMesh(const std::string& materialName)
{
Mesh mesh;
mesh.materialName = materialName;
m_meshes.push_back(mesh);
}
Mesh& Object::GetLastMesh()
{
if (m_meshes.empty()) {
auto material = std::make_shared<Material>();
material->SetAmbientColor(glm::vec3(0.52f, 0.52f, 0.52f));
AddMaterial(DEFAULT_MATERIAL_NAME, std::move(material));
CreateNewMesh(DEFAULT_MATERIAL_NAME);
}
return m_meshes.back();
}
Object* Object::LoadFile(const std::string& filename) {
std::ifstream file(filename);
if (!file.is_open()) {
std::cerr << "Failed to open OBJ file: " << filename << std::endl;
return {};
}
Object* obj = new Object();
char line[1024]; // static buffer for each line (enough for OBJ lines)
while (file.getline(line, sizeof(line))) {
Parser p(line);
char* prefix = p.TakeWord();
if (!prefix) continue;
switch (toElement(prefix)) {
case ObjElement::OHASH: // comment
continue;
case ObjElement::MTLLIB:
{
char* mtlFile = p.TakeWord();
if (mtlFile) {
std::filesystem::path fullPath = filename;
std::filesystem::path mtlPath = fullPath.replace_filename(mtlFile);
obj->LoadMaterials(mtlPath);
}
break;
}
case ObjElement::USEMTL:
{
char* materialName = p.TakeWord();
if (materialName) {
auto& mesh = obj->GetLastMesh();
if (mesh.materialName != materialName) {
Mesh newMesh;
newMesh.materialName = materialName;
obj->m_meshes.push_back(newMesh);
}
}
break;
}
case ObjElement::O: // object name
{
char* name = p.TakeWord();
if (name) obj->m_name = name;
break;
}
case ObjElement::V: // vertex
{
float x = p.TakeFloat();
float y = p.TakeFloat();
float z = p.TakeFloat();
float w = p.TakeFloat();
if (w != 0.0f && w != 1.0f) {
x /= w; y /= w; z /= w;
}
obj->m_vertices.emplace_back(x, y, z);
break;
}
case ObjElement::VN: // normal
{
float x = p.TakeFloat();
float y = p.TakeFloat();
float z = p.TakeFloat();
obj->m_normals.emplace_back(x, y, z);
break;
}
case ObjElement::VT: // texcoord
{
float u = p.TakeFloat();
float v = p.TakeFloat();
obj->m_texCoords.emplace_back(u, 1.0f - v);
break;
}
case ObjElement::F: // face
{
auto& mesh = obj->GetLastMesh();
int raw_vi, raw_ti, raw_ni;
while (p.TakeFaceIndices(raw_vi, raw_ti, raw_ni)) {
// Convert raw OBJ indices to 0-based / -1 sentinel
int vi = Object::NormalizeIndex(raw_vi, (int)obj->m_vertices.size());
int ti = Object::NormalizeIndex(raw_ti, (int)obj->m_texCoords.size());
int ni = Object::NormalizeIndex(raw_ni, (int)obj->m_normals.size());
if (vi < 0) {
// malformed token (no vertex) — skip
continue;
}
glm::vec3 vert = obj->m_vertices[vi];
glm::vec3 norm(0.0f);
glm::vec2 texCoord(0.0f);
if (ni >= 0) norm = obj->m_normals[ni];
if (ti >= 0) texCoord = obj->m_texCoords[ti];
mesh.m_vertexBuffer.emplace_back(vert, norm, texCoord);
mesh.m_indexBuffer.push_back(mesh.m_vertexBuffer.size() - 1);
}
break;
}
default:
// ignore unknown tokens
break;
}
}
std::cout << "Object name: " << obj->m_name << std::endl;
std::cout << "Vertices count: " << obj->m_vertices.size() << std::endl;
std::cout << "Normals count: " << obj->m_normals.size() << std::endl;
std::cout << "TexCoords count: " << obj->m_texCoords.size() << std::endl;
std::cout << "Meshes count: " << obj->m_meshes.size() << std::endl;
std::cout << "Materials count: " << obj->m_materials.size() << std::endl;
file.close();
for (auto &mesh : obj->m_meshes) {
mesh.Upload();
}
return obj;
}
void Object::EnableBatch(unsigned int instanceVBO) {
for (auto &mesh : m_meshes) {
mesh.Bind();
glBindBuffer(GL_ARRAY_BUFFER, instanceVBO);
std::size_t vec4Size = sizeof(glm::vec4);
for (int i = 0; i < 4; ++i) {
glEnableVertexAttribArray(3 + i); // use locations 3,4,5,6 for instance matrix
glVertexAttribPointer(3 + i, 4, GL_FLOAT, GL_FALSE,
sizeof(glm::mat4), (void*)(i * vec4Size));
glVertexAttribDivisor(3 + i, 1); // IMPORTANT: one per instance, not per vertex
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
mesh.Unbind();
}
}
// void Object::Render(Shader& shader)
// {
// for (auto &mesh : m_meshes) {
// auto material = GetMaterial(mesh.materialName);
// shader.setFloat("ambientStrength", 0.2f);
// shader.setFloat("shininess", material->GetSpecularWeight());
// shader.setFloat("opacity", material->GetOpacity());
// shader.setBool("useSpecular", material->GetIllumination() >= 2);
// shader.setFloat("specularStrength", 1.0f);
// shader.setVec3("ambientColor", material->GetAmbientColor());
// shader.setVec3("diffuseColor", material->GetDiffuseColor());
// shader.setVec3("specularColor", material->GetSpecularColor());
// if (material->HasDiffuseTexture()) {
// shader.setBool("useTexture", true);
// glActiveTexture(GL_TEXTURE0);
// glBindTexture(GL_TEXTURE_2D, material->GetDiffuseTexture()->GetID());
// shader.setInt("diffuseTex", 0);
// } else {
// shader.setBool("useTexture", false);
// }
// mesh.Render();
// }
// }
void Object::Render(Shader& shader, unsigned int count)
{
for (auto &mesh : m_meshes)
{
auto material = GetMaterial(mesh.materialName);
// --- Basic material properties ---
shader.setFloat("opacity", material->GetOpacity());
// Albedo (base color)
shader.setVec3("albedo", material->GetDiffuseColor());
// Metallic and roughness (defaults)
shader.setFloat("metallic", 0.8f);
shader.setFloat("roughness", 0.5f);
shader.setFloat("ao", 1.0f); // default ambient occlusion if none
// --- Optional textures ---
int texUnit = 0;
// Albedo texture
if (material->HasDiffuseTexture()) {
shader.setBool("useAlbedoMap", true);
glActiveTexture(GL_TEXTURE0 + texUnit);
glBindTexture(GL_TEXTURE_2D, material->GetDiffuseTexture()->GetID());
shader.setInt("albedoTex", texUnit++);
} else {
shader.setBool("useAlbedoMap", false);
}
// Metallic texture
// if (material->HasMetallicTexture()) {
if (false) {
shader.setBool("useMetallicMap", true);
glActiveTexture(GL_TEXTURE0 + texUnit);
// glBindTexture(GL_TEXTURE_2D, material->GetMetallicTexture()->GetID());
shader.setInt("metallicTex", texUnit++);
} else {
shader.setBool("useMetallicMap", false);
}
// Roughness texture
// if (material->HasRoughnessTexture()) {
if (false) {
shader.setBool("useRoughnessMap", true);
glActiveTexture(GL_TEXTURE0 + texUnit);
// glBindTexture(GL_TEXTURE_2D, material->GetRoughnessTexture()->GetID());
shader.setInt("roughnessTex", texUnit++);
} else {
shader.setBool("useRoughnessMap", false);
}
// AO texture
// if (material->HasAoTexture()) {
if (false) {
shader.setBool("useAoMap", true);
glActiveTexture(GL_TEXTURE0 + texUnit);
// glBindTexture(GL_TEXTURE_2D, material->GetAoTexture()->GetID());
shader.setInt("aoTex", texUnit++);
} else {
shader.setBool("useAoMap", false);
}
// --- Render mesh ---
mesh.Render(count);
}
}